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Summary: The lithium enolate from the cyclohexenone (4) possessingthec,8- 

unsaturated ester moiety caused an intramolecular double Michael 

reaction to produce stereoselectively the Spiro fused bicyclo[2.2.2]- 

octane C&Q). 

Spiro fused bicyclo[2.2.2loctane ring system is a skeleton of some tetra- 

and penta-cyclic diterpenoids such as atisirene and atisine. Recently it has 

been demonstrated that compounds possessing such frameworks are useful1 syn- 

thetic intermediates of complicated natural products. For example, chas- 
1 

manine , aphidicolin 2,3 , maritimo13'4 and stemarin' have been ingeneously syn- 

thesized through the rearrangement from bicyclo[2.2.2]octane derivatives. 

Keeping in mind the synthesis of natural products, we have searched the general 

method for the construction of the above ring system. In the previous study, 

the atisane skeleton (5) was assembled by intramolecular Diels-Alder reaction 

of the triene (,l) but a poor stereoselectivity was observed. 6 Intending to 

find out a high stereoselective synthesis of the desired cyclic compound, we 

planned the novel intramolecular double Michael reaction', since it was antici- 

pated that a metal chelated 

intermediate would lead to a 

selective formation of the 

natural type ring system. 

Here we wish to report our Z)H30+ 

successful result by this 

strategy. 
(;1) 

As a model experiment of intramolecular double Michael 

of the ~,8-unsaturated enone ester (8,) was examined under 

(Q R=a-H and 8-H 

reaction, cyclization 

a variety of condi- 

tions. The substrate (8,) was prepared as follows. Grignard reaction of o- - 
anisaldehyde (2) gave in 91% the alcohol (,$,)8, which was esterified with iso- 

butyric acid in the presence of dicyclohexylcarbodiimide and 4-dimethylamino- 

pyridine'. The ester (k)8 obtained in 85% yield was silylated with trimethyl- 
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chlorosilane in the presence of lithium diisopropylamide and hexamethyl- 

phosphoric triamide at -78'C and then subjected to the [3,31 sigmatropic re- 

arrangement followed by hydrolysis with 10% hydrochloric acid to give the 

acid ($,)' itoSS, yield. After reduction of the acid (k) with lithium aluminum 

hydride, the resulting alcohol was treated with excess metallic lithium in 

liquid ammonina in the presence of isopropanol and then hydrochloric acid in 

methylene chloride. Oxidation of the enone (x18, obtained in 70% yield form $i, 

with pyridinium chlorochromate, followed by the reaction of the resulting alde- 

hyde with the Wadsworth-Enunons reagent 
11 

gave the unsaturated ester (@,) 
8 

as the 

E-isomer in 90% yield. 

OMe 

&HO i, ii ) @ iii, iv , h"zH 

($ R=COCHMe; 

1. vi ) +OH vii, viii ) 

(0 (k!) 

Reagents: i) CH2=CHMg3r. ii) Me2CHC02H, DCC, DMAP. iii) LDA, HMPA then TMSCl. iv) lU% HCl. 

v) LiA1H4. vi) Li, liq. NH3, iPrOH then 10% HCl. vii) PCC. viii) (EtO)2P(0)CH2C02Et, NaH. 

Some of the conditions and yields examined for cyclization of rl, are listed 

in the Table. The desired tricyclic compound (&Q)8 was produced as a single 

isomer by the lithium enolate formation of t under the kinetically controlled 

conditions 
12 

at -78'C followed by reaction under the indicated conditions. 

Best result, 60% yield, was obtained on the reaction utilizing lithium hexa- 

methyldisilazide (LHMDS) as the entry 2. 

Figure 

Stereochemistry of the product C&g) 

was deduced by the reduction with 

sodium borohydride. Namely, IR spec- 

trum of the alcohol (JJ,)8 formed in 

83% yield as a sole product showed the 

presence of hydroxyl and ester groups, 

which are intramolecularly hydrogen- 

bonded. Furthermore the chemical 

shifts of two methyl groups in 'H-NMR 

spectrum were not significantly chang- 

ed by the reduction. The above as- 

signment was further confirmed by the 

X-ray analysis of the tricyclic com- 

pound (j&Q,), mp 97 - 98'C 
13 . The mol- 

ecular structure of one of enantiomer 

of # is shown in the Figure. 
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The stereoselective formation of ,lQ, which has the suitable stereochemical 

arrangement for the synthesis of natural products, can be accounted by the con- 

jugated addition via the endo mode intermediate (2) in which the two oxygens 

are held closely to the metal cation. Although this highly stereocontrolled 

reaction could be regarded as the sequential Michael reaction, the anion-accel- 

erated Diels-Alder mechanism could not be ruled out 7 . Application of this new 
14 method to the synthesis of natural products is in progress . 

@ _ ~~,&--p#$)Et ]-E;;$jl$R; 
?I (2; (JJ,) R'=OH, R*=H 

Conditions and Yields of Formation of the 
Tricyclic Compound (,$Q) from (8) 

entry base eq. solvent temp.('C) time(h) Yield(%) 

1 NaH 1.5 THF 66 24 - 

2 LHMDS 1.3 THF -70 Q r-t. 20 30 s 60 

3 LHMDS 1.3 THF-HMPA -78 'L r-t. 20 10 

4 LDA 2.0 THF -78 2 22 

5 LDA 1.3 THF -78 16 24 

6 LDA 1.3 THF -78 Q -20 2 45 
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